Chemotherapy
In
Head and Neck Cancer

Prof Subir Gangopadhyay
Head, Dept. of Radiotherapy
NRS Medical College & Hospital
Introduction - Approach to Topic

- Importance of systemic treatment in cancer
- Need for systemic treatment in head neck cancer
- Methods for integration of systemic treatment with local treatment
- Evidence base for integration of treatment modalities
I Shall NOT Discuss..

- Newer agents for chemotherapy
- Chemo-radiotherapy
- Biological response modifiers
- Altered fractionation and chemotherapy
Importance of Systemic Treatment in Cancer
Importance of Systemic Treatment in Cancer

- Paul Ehrlich coined the term *chemotherapy*
- Wide usage in various hematological and solid malignancies with varied success
- Obstacles to efficacy: toxicity to the normal tissues and development of cellular drug resistance
Chemotherapy- Clinical Applications in solid tumours

- **Mainstay of treatment**

 For cancers which are curable by chemotherapy either alone or in combination with other modalities like Radiotherapy or surgery

 - Lymphoma
 - Paediatric malignancies
 - Choriocarcinoma
 - Testicular Tumours
Chemotherapy - Clinical Applications

- Neoadjuvant treatment
 - For patients with locally advanced disease for whom local forms of therapy, such as surgery or radiation, or both, are inadequate by themselves

- Anal cancer
- Bladder cancer
- Breast cancer
- Esophageal cancer
- Head and neck cancer
- Gastric cancer
- Osteogenic sarcoma
- Rectal cancer
- Soft tissue sarcoma
Chemotherapy- Clinical Applications

- Adjuvant treatment
 To treat micrometastatic disease at a time when tumor burden is at a minimum, thus enhancing the potential efficacy of drug treatment

- Breast cancer
- Colorectal cancer
- Gastric cancer
- Non–small cell lung cancer
- Osteogenic sarcoma
- STS of extremities
Clinical End Points in Evaluating Response to Chemotherapy

<table>
<thead>
<tr>
<th>Neoadjuvant</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Response Rates: Help in Prognostic stratification of patients Eg. Osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>• Organ conservation rates: eg Larynx, breast etc</td>
<td></td>
</tr>
<tr>
<td>• Survival: doubtful</td>
<td>• survival: most important determinant</td>
</tr>
<tr>
<td></td>
<td>• Response Rates: cannot be used to measure efficacy as the primary tumour removed already</td>
</tr>
</tbody>
</table>
Mechanisms for Enhanced Efficacy by Addition of Chemotherapy

- Spatial Co-operation
- Independent toxicity
- Radiosensitization
- Protection of normal tissues

AIMED AT INCREASING THE THERAPEUTIC RATIO OF TREATMENT
Need for Systemic Treatment in Head Neck Cancer
Presentation of Head Neck Cancer

- Usual mode of presentation: advanced but regionally localized disease
- Advanced disease

<table>
<thead>
<tr>
<th>Category</th>
<th>Descriptor</th>
<th>Survival (3 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>$T_3N_0M_0$ or $T_{1-3}N_1M_0$</td>
<td>50-75%</td>
</tr>
<tr>
<td>Poor</td>
<td>$T_4N_{0-1}M_0$ or $T_{1-4}N_{2-3}M_0$</td>
<td>20-45%</td>
</tr>
</tbody>
</table>
Need for Systemic Treatment in Head Neck Cancer

- <10% of patients with head neck cancer have metastatic disease at diagnosis

 But

- >50% of patients have micro metastasis at autopsy
Need for Systemic Treatment in Head Neck Cancer

• There has been remarkable improvement in local control in head neck cancer by the use of various techniques like
 – Altered fractionation
 – Concurrent chemo radiotherapy and
 – IMRT/3D-CRT

* This improvement in local control might make systemic disease burden an important determinant of survival in the future
Evolution of Chemotherapy In Head Neck Cancer

• Unusual sensitivity of Squamous cell cancer of head neck region to chemotherapy
• Initially used for metastatic/recurrent disease
• Use of single agent methotrexate/cisplatinum showed response rates of 30% in this situation
Evolution of Chemotherapy In Head Neck Cancer

• High response rates when used in previously untreated patients- Neoadjuvant setting

• Progression from single agent to multiagent chemotherapy showed improved response rates but no survival advantage
Combination Vs Single Agent Chemotherapy

<table>
<thead>
<tr>
<th>ECOG</th>
<th>Methotrexate</th>
<th>Mtx+CDDP+Bleomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>8%</td>
<td>16%</td>
</tr>
<tr>
<td>ORR</td>
<td>35%</td>
<td>48%</td>
</tr>
</tbody>
</table>

Survival Similar in both arms
Summary of Results of Phase II Trials of Neo-adjuvant Chemotherapy

- ORR 80-100%
- CR 20-50%
- CR correlates with good prognosis
- No value of >3 cycles of chemotherapy
- T & N stage & PS consistent prognostic factors
- Lack of response to chemotherapy predicts lack of response to Radiotherapy as well
- Local treatment not technically jeopardized
Randomized Control Trials

Phase III

Single agent Methotrexate based

<table>
<thead>
<tr>
<th>Authors</th>
<th>No of patients</th>
<th>Response rates</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowlton et al</td>
<td>96</td>
<td>NA</td>
<td>No diff in survival</td>
</tr>
<tr>
<td>Fazekas et al</td>
<td>638</td>
<td>NA</td>
<td>No diff in survival</td>
</tr>
<tr>
<td>Taylor et al</td>
<td>95</td>
<td>6% 34%</td>
<td>No diff in survival</td>
</tr>
</tbody>
</table>
Non Platinum Multi-agent Chemotherapy

<table>
<thead>
<tr>
<th>Authors</th>
<th>Patients</th>
<th>Chemotherapy agents</th>
<th>Response rates</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stell et al</td>
<td>86</td>
<td>O,B,5fu,Mtx, Cort,6MP, Cy</td>
<td>NA, NA</td>
<td>No diff in surv.</td>
</tr>
<tr>
<td>Stolwijk et al</td>
<td>68</td>
<td>V,Mtx, Cyclo,5fu</td>
<td>NA, NA</td>
<td>No diff in surv.</td>
</tr>
<tr>
<td>Holoye et al</td>
<td>83</td>
<td>B,Cyclo,Mtx, 5fu</td>
<td>5%, 67%</td>
<td>No diff in surv.</td>
</tr>
</tbody>
</table>
Platinum Based Multi Agent Chemotherapy

<table>
<thead>
<tr>
<th>Authors</th>
<th>Patients</th>
<th>Chemotherapy agents</th>
<th>Response rates</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toohill et al</td>
<td>60</td>
<td>Cisplatin+5FU</td>
<td>19% 67%</td>
<td>No diff in surv.</td>
</tr>
<tr>
<td>Martin et al</td>
<td>75</td>
<td>Cisplatin+5FU</td>
<td>46% 22%</td>
<td>No diff in surv.</td>
</tr>
</tbody>
</table>
Problems in Studies…

• Large number of trials using ineffective chemotherapy regimes
• Inadequate doses of drugs used in significant number of trials
• Intrinsic flaws in design of a number of trials
• A look at some of the better designed trials…
Studies With Minimal Deficiencies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Patients</th>
<th>Chemotherapy agents</th>
<th>Response rates</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuller et al</td>
<td>158</td>
<td>Cisplatin, Mtx, Bleomycin, Vincristin</td>
<td>19% 51%</td>
<td>Decreased distal Metastasis</td>
</tr>
<tr>
<td>H&N Contracts Study</td>
<td>402</td>
<td>Cisplatin, Bleomycin, Mtx</td>
<td>3% 34%</td>
<td>Survival Benefit by subgroup analysis, Decreased distal Metastasis</td>
</tr>
</tbody>
</table>
Organ Preservation

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Results</th>
</tr>
</thead>
</table>
| Veterans Affairs Larynx Trial | PF, three cycles; radiotherapy | 12 y | • Larynx preserved in 60% of survivors
• No difference in survival,
• Reduced distal metastasis with PF |
| EORTC Hypopharynx | PF, three cycles; radiotherapy | 10 y | • Larynx preserved in 30% of survivors,
• Survival equivalent
• Reduced distal metastasis |
Survival Benefit

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio trial</td>
<td>PF four cycles; surgery and/or radiotherapy</td>
<td>10 y</td>
<td>Significant improvement in survival in unresectable patients; reduced distal metastasis</td>
</tr>
<tr>
<td>GETTEC Oropharynx trial</td>
<td>PF three cycles; surgery and/or radiotherapy</td>
<td>5y</td>
<td>Significant improvement in survival</td>
</tr>
</tbody>
</table>
Summary of Phase III Trials of Neo-adjuvant Therapy

• Cisplatin and 5 Fluorouracil induction chemotherapy best studied
• Larynx preservation possible in operable/resectable cases of carcinoma Hypopharynx and Larynx
• Survival benefit limited to subset of patients with unresectable disease
• In all other situations benefit is questionable
Large Number of Trials -
Large Number of Conflicting Results

Meta-Analysis
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>4292</td>
<td>7828</td>
<td>5079</td>
<td>10,741</td>
</tr>
<tr>
<td>Main endpoints</td>
<td>Survival, LC, Distal Mets</td>
<td>Survival, LC, Distal Mets</td>
<td>Survival, LC, Response at 2 Months</td>
<td>DFS</td>
</tr>
</tbody>
</table>
Summary of Results of Meta-analyses

• General class of induction trials did not improve survival compared to standard therapy
• Subset of induction chemotherapy trials using Cisplatin/5FU (PF) chemotherapy resulted in 5% improvement in 5 year survival
Summary of Results of Meta-analyses

• Difference less substantial than 8% improvement seen with concurrent chemotherapy trials

• Interpretation confounded by non PF regimes, ineffective PF regimes and carboplatin containing regimes - inferior to cisplatin in HNC
Adjuvant Treatment

• Traditional adjuvant treatment in HNC has been radiotherapy in situations where risk of disease recurrence above clavicles exceeds 20%

 ➢ Close/+ve margins
 ➢ Extent of nodal involvement
 ➢ Extra capsular spread
 ➢ Distribution of involved nodes at lower levels in neck
 ➢ PNI/LVI
Adjuvant Chemotherapy

• Till date adjuvant chemotherapy has been used only in advanced disease

• Evidence base for use is difficult to obtain as trials include heterogeneous patient populations and combinations of neo adjuvant, concurrent and adjuvant settings
Adjuvant Chemotherapy Without Concurrent Radiotherapy RCT

Only post-operative chemotherapy

<table>
<thead>
<tr>
<th>Author/Group</th>
<th>Standard treatment</th>
<th>Experimental treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intergroup 0034</td>
<td>RT</td>
<td>Cisplatin & 5FU followed by RT</td>
<td>No difference in survival. Distant metastasis decreased for CT group</td>
</tr>
<tr>
<td>French</td>
<td>RT</td>
<td>RT followed by cisplatin, bleomycin and Mtx</td>
<td>Better Locoregional control for CT but worse OS</td>
</tr>
<tr>
<td>Japanese</td>
<td>Surgery or RT</td>
<td>Uracil & Tegafur</td>
<td>For surgery patients only decreased distal metastasis, no change in OS</td>
</tr>
</tbody>
</table>
Adjuvant Chemotherapy Without Concurrent Radiotherapy RCT

Pre-operative and postoperative chemotherapy

<table>
<thead>
<tr>
<th>Author/Group</th>
<th>Standard treatment</th>
<th>Experimental treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracts</td>
<td>Sx+ PORT</td>
<td>NACT(Cis+Bleo) followed by standard treatment NACT-Standard treatment- Adjuvant Cisplatin x 6 m</td>
<td>No difference in survival</td>
</tr>
<tr>
<td>Ervin</td>
<td>Neo-adjuvant CT(P+Bl+Mtx +Lv)</td>
<td>Maintenance in responders with same regime x 3 cycles</td>
<td>3 yr DFS improved for maintenance Ct</td>
</tr>
<tr>
<td>Taylor</td>
<td>Local Therapy (Surgery + RT)</td>
<td>NACT(Mtx+Lv)- Local Therapy - CT</td>
<td>No difference in DFS and OS</td>
</tr>
<tr>
<td>Rentschler</td>
<td>Surgery + RT</td>
<td>Escalating dose Mtx-Sx-Escalating dose Mtx-RT-Escalating dose Mtx</td>
<td>No difference in DFS and OS</td>
</tr>
</tbody>
</table>
Post-operative Adjuvant Chemotherapy With Concurrent Radiotherapy - RCT

- Used primarily with the intention of enhancing the efficacy of radiotherapy in high risk patients
- Cisplatin added mainly as a radiosensitizer
- Mitomycin used primarily as a hypoxic cytotoxic
Post-operative Adjuvant Chemotherapy With Concurrent Radiotherapy - RCT

<table>
<thead>
<tr>
<th>Author/Group</th>
<th>Standard treatment</th>
<th>Experimental treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachaud</td>
<td>RT</td>
<td>CT-RT (Cisplatin)</td>
<td>Median survival and 5 Yr survival superior for CT-RT</td>
</tr>
<tr>
<td>Haffty</td>
<td>RT</td>
<td>CT-RT (Mitomycin)</td>
<td>Decreased LR in CT-RT; No change in OS</td>
</tr>
<tr>
<td>Weissberg</td>
<td>RT</td>
<td>CT-RT (Mitomycin)</td>
<td>Trend to improvement in DFS for CRT; Better Local control</td>
</tr>
<tr>
<td>Weissler</td>
<td>RT twice daily</td>
<td>RT twice daily + cisplatin and 5FU</td>
<td>No difference in DFS or OS</td>
</tr>
</tbody>
</table>
Adjuvant Chemotherapy for Nasopharyngeal Carcinoma

• Most chemo & Radiosensitive entity of all HNC
• High incidence of distal metastasis cf other HNC
• Integration of chemotherapy into Radiotherapy has resulted in improved disease outcomes
RTOG 88-17 / Intergroup 0099: 1998

- RT alone vs RT with concurrent cisplatin chemotherapy and adjuvant cisplatin + 5-Fu In Stage III and IV disease
- Dose: 70 Gy to primary. For neck, 50 Gy for N0 disease, 66 Gy for nodes ≤ 2 cm, and 70 Gy for nodes > 2 cm
- Cisplatin given every 3 weeks at 100 mg/m² x 3 cycles. Then adjuvant chemo 4 weeks after finishing RT: cisplatin 80 mg/m² and 5-FU 1000 mg/m²/d by 96-hr infusion q4months x 3 cycles
RTOG 88-17 / Intergroup 0099: 1998

- Partial or radical neck dissections for persistent neck disease
- Median follow-up 2.7 years
- 3-year PFS 69% (RT+chemo) vs 24%.
- 3-year OS 78% vs 47%

First randomized trial to show a survival benefit for the use of concurrent chemotherapy in HNC

Adjuvant chemotherapy after concurrent CT-RT now standard of care in Nasopharyngeal cancer
Summary- Integration of Chemotherapy With Local Treatment in Head Neck Cancer
Neoadjuvant Chemotherapy

- Advantages
 - Least toxic
 - Maximize systemic therapy
 - Smaller area of local treatment if induction therapy shrinks tumor

- Disadvantages
 - Increased treatment time
 - Lack of local synergy
Concurrent Chemotherapy

• Advantages
 – Shorter treatment time
 – Radio sensitization

• Disadvantages
 – Compromised systemic therapy
 – Increased toxicity
 – No cytoreduction in tumor
Concurrent Followed by Adjuvant

• Advantages
 – Maximizes systemic therapy
 – Radiation enhancement
 – Local & distant therapy delivered upfront

• Disadvantages
 – Increased toxicity
 – Increased treatment time
 – Difficult to complete chemotherapy after ct-rt
Neoadjuvant Followed by Concurrent

- Advantages
 - Maximizes systemic therapy
 - Radiation enhancement

- Disadvantages
 - Increased toxicity
 - Increased treatment time
 - Difficult to complete ct-rt after chemotherapy
Questions Please…