Role of protons, heavy ions and BNCT in brain tumors

Prof G K Rath
Head, NCI (AIIMS-2)
Chief, Dr. BRA IRCH, Professor Radiation Oncology
All India Institute of Medical Sciences, New Delhi
Overview of presentation

• Physics of Protons, Heavy ions
• Radiobiology of Protons, Heavy ions
• Rationale and Indications of protons
• Dosimetric and clinical results of protons
• Principles of boron neutron capture therapy (BNCT)
• Clinical results and challenges of BNCT
• Conclusion
Aim of Radiation therapy in clinical practice

Complete eradication of tumor & Minimal normal tissue toxicity
• Number of photon gets attenuated as depth increases.
• The dose that they deposit decreases also (proportionately).
• Entry dose and exit dose
Limitations of Conventional Photon based treatments

- Significant exit dose
- Dependent biological effect on oxygen
 (indirect effect; 70–80%)
- Dose escalation not possible beyond a limit
- Second malignancies
Proton dose distribution

- Low entrance dose (plateau)
- Maximum dose at depth (Bragg peak)
- Rapid distal dose fall-off
Problem with the “Bragg Peak”
Spread out Bragg Peak

• The spread-out Bragg peak (SOBP):
 – Extending the dose in depth
 – Many Bragg peaks with different energies

Superposition of Bragg-peaks by energy variation
Relative Biological Effectiveness of proton

• Relative biologic efficiency is a ratio of doses from two beams to produce the same effect
• RBE = dose (standard beam)/dose (test beam).
• Protons has exactly the same biologic effects as X-rays: RBE is 1.1

Similar biological effect with improved physical properties!!
End of History and Beginning of a New future!!

• 1954: First treatment of pituitary tumors
• 1958: First use of protons as a neurosurgical tool
• 1990: First hospital based proton therapy facility was opened at the Loma Linda University Medical Center (LLUMC) in California.
Components of proton beam therapy

- Proton accelerator
- Beam transport system
- Treatment Rooms
- Gantry
- Standard table
Cyclotron and Beam Line

1. Cyclotron: Using electric fields, the cyclotron can accelerate the hydrogen protons to two-thirds the speed of light.

2. Gantry: Each of the three gantries is three-stories tall and weighs up to 100 lbs.

3. Electromagnets: The magnets focus and route the proton beams to the gantry.
Potential use of protons in CNS

• Reduction of toxicities & second neoplasms: pediatric tumors
• Dose escalation: Increase control & survival
 – Skull base tumors
 – HGG
 – Benign tumors: Acoustic neuroma, AVMs
• In adults: decrease neurocognitive deficits- LGG
Particle therapy for CNS tumors: So far

• Several dosimetric studies:
 – Protons versus photons
 – Majority suggest better or equivalent than IMRT or stereotactic techniques for tissue sparing
 – IMPT: Improves homogeneity & conformality

• Very few prospective trials
• Limited number of patients treated
• Follow up of patients short in these trials
Indications of protons & heavy ions

• Re-irradiation
• Benign brain tumors:
 – Vestibular Schwannomas/Acoustic Neuromas
 – Meningioma
 – Pituitary adenoma
 – Arteriovenous malformation
• Skull base tumors: Chordoma/Chondrosarcomas
• **Pediatric brain tumors**: Medulloblastoma, Ependymoma, Pilocytic astrocytoma, Germ cell tumors
• Low grade & High grade glioma
• Others
TCP/NTCP rationale

- **Good Evidence**
 - Chordoma
 - Chondrosarcoma
 - Other sarcomas
 - G2/3 meningioma
 - GBM

- **Not Much Data**
 - G1 meningioma, pit adenoma, LGG, mets

- **High dose RT Sensitive structures**
 - Mixed Data
 - Higher dose RT Large volume
 - Good tumor control? Benefit of PRT
Chordomas/ Chondrosarcoma /Meningioma

• Local control of chordomas* > 80%, better than conventional photon therapy.

• 5 year local control rates >95% and OS >90% for skull base Chondrosarcoma***

• Meningioma**: 3 years local control of 92–100% with grade 3 or greater toxicity of 0–12.5%

*Habrand JL et al. IJROBP 2008;71:672–5
***Ares C et al. IJROBP 2009;75:1111-18
Rationale for use of protons for pediatric CNS tumors

- Most results are for Medulloblastoma & Ependymoma
- Better sparing of OARs:
- Cost-effective
 - Reduced oto-toxicity, endocrine deficiency, cardiac disease, secondary malignancy [Cancer 2013;119:4299–307]
70 patients (2000-2011; t/t at MGH)
27% Supratentorial and 73% Infratentorial.
66% GTR and 34% STR
Median follow up: 46 months
3 year local control, PFS, OS: 83%; 76%; 95% respectively compare favorably with photons

Merchant et al reported 5 year PFS: 74% & 5 Year OS: 85% treated with photon beam therapy
Medulloblastoma: A case scenario for ideal PBT

Dosimetric Advantage: lesser radiation dose to OARs

Table 2 Dose to cochlea and heart by radiation delivery: Spinal irradiation for medulloblastoma

<table>
<thead>
<tr>
<th>Dose to 90% of the cochlea, %</th>
<th>Dose to 50% of the heart volume, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td>Standard photons</td>
</tr>
<tr>
<td>101.2</td>
<td>72.2</td>
</tr>
<tr>
<td>33.4</td>
<td>29.5</td>
</tr>
<tr>
<td>2.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Intensity modulated x-ray beam
Proton beam
Medulloblastoma: Late Toxicity

Table 1 Estimated risk of radiation-induced cancer by radiation delivery technique following spinal irradiation for childhood medulloblastoma

<table>
<thead>
<tr>
<th>Radiation delivery technique</th>
<th>Risk of radiation-Induced cancer, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity modulated x-ray beam</td>
<td>30</td>
</tr>
<tr>
<td>Electron beam</td>
<td>21</td>
</tr>
<tr>
<td>Conventional x-ray beam</td>
<td>20</td>
</tr>
<tr>
<td>Intensity modulated electron beam</td>
<td>15</td>
</tr>
<tr>
<td>Intensity modulated proton beam</td>
<td>4</td>
</tr>
</tbody>
</table>
Medulloblastoma: Clinical outcome

• Limited and mixed literature
• Early clinical outcomes favorable and encouraging
• **MGH Experience**: 15 patients treated to a median CSI dose of 21.6 Gray and boost dose of 54.0 Gy. Median follow up 39 months, local control >90%
• **Adult patients**: 2 year PFS of 94% for protons versus 85% for photons treated with same protocol

*Jimenez RB et al. IJROBP, 2013;87(1):120-26
** Brown et al. IJROBP 2013;86:277-284
• 109 patients of Medulloblastoma [2002-2011; treated at MGH]
• Median follow up: 38.8 months (1.4-119.2 months)
• 16 relapses/109 patients: patterns of failure similar to photon beam therapy
• No failure in 70 patients with involved field tumor bed boost

• Promising results!!
Cost-Effectiveness of Proton Radiation in the Treatment of Childhood Medulloblastoma

TABLE 1
Cost and Clinical Outcome per Patient for the Base-Case Assumptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Proton radiation</th>
<th>Conventional radiation</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation cost (€)</td>
<td>10217.9</td>
<td>4239.1</td>
<td>5978.8</td>
</tr>
<tr>
<td>Cost from adverse events (€)</td>
<td>4231.8</td>
<td>33857.1</td>
<td>-29625.3</td>
</tr>
<tr>
<td>Total cost (€)</td>
<td>14449.7</td>
<td>38096.2</td>
<td>-23646.5</td>
</tr>
<tr>
<td>LYG</td>
<td>13.866</td>
<td>13.600</td>
<td>0.266</td>
</tr>
<tr>
<td>QALY</td>
<td>12.778</td>
<td>12.095</td>
<td>0.683</td>
</tr>
</tbody>
</table>
Craniopharyngioma

- **MGH Experience**
 - 15 patients (5 child & 10 adults; 1981-1988) treated at MGH with combined photon+proton
 - 10 year survival rate: 72%; 5 year & 10 year local control rates: 93% & 85%

- **Loma Linda Experience**
 - 15 patients
 - 14/15 local control
 - Only 1 patient had pan-hypo-pituitarism

* Fitzek M. IJROBP 2006; 64 (5):1348-1354
Pituitary tumors

• 2 studies of proton-SRS for functioning pituitary tumors - MGH - Petit et al
 – Acromegaly (22 pt) - 59% off meds at 6.3 y
 – ACTH (38 pt) – CR 100% with Nelsons, 52% with Cushings

• 1 study with fractionated proton (Ronson et al)
 – Loma Linda – 47 pt 54 GyRBE, LC 100%, Hormone control in 19/21 secreting tumors
 – 1 temp tip necrosis at 19 mo, 7 new visual changes, 11 pt with new hormonal deficiencies
AVMs/Acoustic Neuromas

• **Single fraction stereotactic proton RT for AVM**: Median time to obliteration 31 months; 5 & 10 year cumulative obliteration rates: 70% & 90% respectively [Equivalent to photon therapy]

• **Acoustic Neuromas**:
 – 95-100% local control rates
 – ~90% preservation of facial and trigeminal nerves
 – Hearing preservation rates: 50-60%

*Hattangadi-Gluth JA et al. IJROBP 2014;89(2):338-46
MGH Glioblastoma trial

- 23 patients 1992-1996
- 3D planning:
 - V1 = surgical cavity + residual 90.0 CGE
 - V2 = V1 + 2cm 64.8 CGE
 - V3 = T2 + 2cm 50.4 CGE
- BID regimen with P+X, P > 33% of dose
- Med OS 20 mo from dx, 2y OS 34%, 3y OS 18%
- High incidence of steroid use, 57% had surgery after RT
Treatment effect 90CGE

![Kaplan-Meier survival curve](image)

- **N = 23**
- **Median = 20 months**

Reoperation following development of clinical and imaging changes after radiotherapy*

<table>
<thead>
<tr>
<th>Op No. & Type</th>
<th>No. of Patients</th>
<th>Necrosis Only</th>
<th>Necrosis W/ Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd biopsy</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2nd resection</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3rd biopsy</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3rd resection</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4th biopsy</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4th resection</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* indicates additional details about reoperation.
Dose Escalation for Malignant Glioma - Overcome Resistance to Therapy

Fig. 2

Cytotoxic chemotherapy
Radiotherapy

GLIOBLASTOMA MULTIFORME
Tumor cells
Glioma tumor stem cells - tumor initiating cells

Tumor initiating cells remain

After latency period

Tumor resistant to conventional therapy

TUMOR RELAPSE
Conventional vs high dose Retrospective

- Conventional
 - Photons 60-61.2 Gy / 30-34
- High Dose (with particles)
 - BNCT: 30GyE/1 + 30Gy/15
 - Proton: 50.4Gy/28 photons +/- 23.1GyE/14 boost to GTV
- Multivariate analysis
 - WHO PS
 - RPA class
 - High vs Low dose RT

Matsuda et al BJR, 84, S54-60, 2011
Re-irradiation for Gliomas

• N=18, proton re-irradiation for recurrent glioma
• Median dose: 50.4 CGyE
• Median OS:
 – 12.4 mo bev-naïve pt
 – 7.4 mo bev-refractory pt
• Radiation necrosis: 1 grade 3 (brainstem glioma reRT), 1 grade 2
• Large-volume re RT with proton for recurrent glioma appears to be safe with promising OS outcomes

*Desai BM et al. IJROBP 2014; 90: S286
Second Malignancies: PBT

- MGH-Harvard Cyclotron Laboratory
- Matched 503 HCL proton patients with 1591 SEER patients
- Median f/u: 7.7 years (protons) and 6.1 years (photon)
- Second malignancy rates
 - 6.4% of proton patients (32 patients)
 - 12.8% of photon patients (203 patients)
- Photons are associated with a higher second malignancy risk: Hazard Ratio 2.73, 95% CI 1.87 to 3.98, p<0.0001

Chung et al. ASTRO 2008
Ongoing randomized trials

- **GBM: Proton versus Photons (IMPT vs. IMRT):**
 - https://clinicaltrials.gov/show/NCT01854554
 - Currently recruiting: MDACC, Texas
 - Prospective phase II randomized trial
 - Primary outcome: Time to neurocognitive failure

- **GBM: Dose escalated Proton versus Photons**
 - Prospective phase II study [OS primary aim]
 - Multicentric study; PI: Minesh Mehta
 - Conventional RT (60 Gray) vs. Dose escalated (50 Gray in 30# with SIB of 75 Gray/30#)

- **GBM CLEOPATRA Trail [Germany]**
 - Phase II randomized study comparing proton boost with carbon ions (10 GyE in 5# versus 18 GyE in 6#)
Carbon Ion trail for HGG

• 1994 – 2002: 48 patients
 – 16 AA, 32 GBM
 – 50Gy Photons+ escalating C ion (16.8 - 24.8 GyE in 8 fractions over 2 wk)
 – Median survival AA 35 mo, GBM 17 mo
 – No grade 3 acute reaction
 – 8 grade 2 late reactions

* Mizoe et al IJROBP, 69, 390-396, 2007
Challenges in Proton Therapy

- Technical challenges: Beam and Range Uncertainties
- Motion management: Not incorporated into routine practice
- Imaging: Onboard for treatment verification not available
- Limited phase III RCTs
- Cost effectiveness
Technology Development

- Multi-leaf Collimators
- Cone Beam CT scan
- On-Board PET Imaging
- Intensity Modulated Proton therapy (IMPT)
- Single room proton therapy delivery systems
Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No

Herman Suita,\#, Hanne Kooya, Alexei Trofimova, Jonathan Farrb, John Munzenridera Thomas DeLaneya, Jay Loefflera, Benjamin Clasiea, Sarios Safaia, Harald Paganettia

aDepartment of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, bMidwest Proton Radiotherapy Institute, Bloomington, IN, USA

Radiotherapy and Oncology 86 (2008) 148–153

• Clinical and dosimetric superiority obvious
• Talent, effort and funds for Phase III trials huge!!
• Sample size required is large for certain clinical endpoints
• Alternative is to pool data in Registry

\textit{Time to adopt and see the results (Safety and efficacy already documented)}
Economics of Proton therapy

Photons:
- Initial set up cost less
- Operating cost less
- Machines depreciation: 7-10 years
- Longer treatment course
- Higher costs: Treatment toxicity and disease recurrences

Protons
- Initial set up cost 10 folds more
- Operating cost 1-3 fold higher
- Machine depreciation: 20-40 years
- Shorter treatment course
- Cost effective: Less toxicity and effective
High Tech Photon therapy vs. Proton therapy

Photons:
- Vast experience, time tested
- Level 1 evidence
- Multiple motion management options
- Onboard Imaging
- Dose prescription/plan evaluation/organ constraints standardized

Protons
- Limited experience
- Level 1 evidence for 1-2 cancers
- Motion management NA
- No onboard imaging
- Standardized guidelines lacking
The BNCT Reaction

2.33 MeV of kinetic energy is released per neutron capture:
initial LET 200-300 keV/µm

Li-7 recoil ion

thermal neutron
(<0.1 eV)

B-10
8 µ

0.477 MeV Gamma

(94%)

Alpha particle
Rationale behind use of BNCT

• Highly localized t/t:
 – Thermal neutrons interact with boron containing tumor cells
 – The charged particles produced are limited to the tumor area working as “magic bullets”

• Radiobiological Advantages:
 – High LET radiation: steeper cell survival curve and lower OER
 – Higher RBE compared to X-rays
Clinical results with BNCT

- Sweet et al [MIT, 1950s]: 18 patients of GBM, massive brain necrosis. Later also sued for the trails.
- At present, BNCT facilities have ceased in USA. This is active in few areas like Japan & China
- **Impressive results reported from Japan by Kawabata et al**
 - 21 patients [10 with BNCT alone; 11 with BNCT & EBRT 20-30 Gray]
 - Mean OS OF 20.7 months; Median 15.6 months
 - Showed survival benefit for all RPA classes
- Future trails evaluating: BNCT & Temozolomide; BNCT & EBRT

* Appl Radiat Isot. 2009 Jul;67(7-8 Suppl):S15-8*
Challenges with BNCT

• Inadequate tumor specificity of boron compounds
• Considerable contamination of thermal neutrons with gamma rays & fast neutrons
• Interaction of normal tissues with thermal neutrons: causing damage to non-boron containing tissues

• **Future efforts:**
 – Tumor selective agents like L-4 dihydroxyborylphenylanine (BPA); BPA-Fructose
 – Modification of nuclear reactors with selective neutron production
 – Use of alternative neutron sources like californium.
 – Development & evaluation of dosimetric techniques
Conclusions

• Proton therapy and heavy ions have potential for enhanced TCP and decreased NTCP
• Dosimetric superiority as compared to photon based treatments
• Clinical evidence limited to few tumors sites
• Promising role in pediatric CNS tumors, chordomas, Chondrosarcoma
• Randomized trails underway for GBM: Results awaited
• Role of BNCT controversial and needs research