HEAVY PARTICLE THERAPY

DR. G.V. GIRI
KIDWAI MEMORIAL INSTITUTE OF ONCOLOGY
HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS

• BETTER DIFFERENTIAL EFFECT ON TUMOR CELLS VS NORMAL CELLS

• SUPERIOR LOCALIZATION CAPABILITY, THEREFORE A HIGHER DOSE TO THE TUMOR
HADRON THERAPY

• NEUTRONS
• NEGATIVE PIONS
• PROTONS
• HEAVY PARTICLES – He 2, C 6, O 8, Ne 10, Ar. 18

> MASS, RELATIVELY DIFFICULT TO PRODUCE AND CONTROL, LIMITED AVAILABILITY

ICRO 2012, Bhatinda
LET –PARAMETER TO DESCRIBE ENERGY LOSS OF THE RADIATION

ICRO 2012, BHATINDA
CONVENTIONAL QUALITY FACTORS (RBE) TO CALCULATE EQUIVALENT DOSES

<table>
<thead>
<tr>
<th>RADIATION</th>
<th>ENERGY</th>
<th>Q FACTOR -- RBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-RAYS, GAMMA, ELECTRON, MUONS</td>
<td>< 10 KeV</td>
<td>5</td>
</tr>
<tr>
<td>NEUTRONS</td>
<td>10 KeV – 100 KeV</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100 KeV --- 2 MeV</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2 MeV – 20 MeV</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>> 20 MeV</td>
<td>5</td>
</tr>
<tr>
<td>PROTONS</td>
<td>> 2 MeV</td>
<td>2</td>
</tr>
<tr>
<td>ALPHA PARTICLES, HEAVY NUCLEI, NUCLEAR FISSION PRODUCTS</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
NEUTRON -- BARYON

BOTH NEUTRONS AND GAMMA RAYS --- UNCHARGED

1932 CHADWICK DEDUCED ITS EXISTENCE BY OBSERVING RECOIL PROTONS THAT WERE PRODUCED BY FAST NEUTRONS INTERACTING WITH HYDROGEN NUCLEI IN PARAFFIN
• RECOIL PROTONS & RECOIL IONS -- DUE TO NEUTRON COLLISIONS ARE THE PRIMARY ENERGY TRANSFER MECHANISMS TO THE TISSUE — ELASTIC SCATTERING.

• BIOLOGICAL EFFECT DUE TO SECONDARY ELECTRONS PRODUCED

• ENERGY DEPOSITED 30 – 80 keV/ MICRON COMPARED TO 1 KeV/ MICRON WITH COMPTON ELECTRONS

ICRO 2012, BHATINDA
NEUTRON GENERATORS

• 14.1 MeV Neutrons (DT)

For a 14 MeV neutron generator (deuterium-tritium): APPROX 250 KeV

\[^1D^2 + ^1T^3 \rightarrow ^2He^4 (3.5 \text{ MeV}) + ^0n^1 (14.1 \text{ MeV}) \]

• D→D NEUTRON GENERATOR, 2.5 MeV

• T→T NEUTRON GENERATOR, 0 – 9 MeV

ICRO 2012, BHATINDA
D – T GENERATOR

NEUTRON TUBE SCHEMATIC

ICRO 2012, BHATINDA
D – T GENERATOR
D – T GENERATORS

- 10 – 15 cgy/MIN
- TRITIUM CONSUMPTION
- HEAT DISSIPATION
- USUAL SSD 75 CM → PRECLUDES ADJUSTABLE COLLIMATORS
- ISOTROPIC EMISSION OF NEUTRONS → EXTN. SHEILDING
- PENETRATION ≤ CO 60. D50 = 9.5CM Vs 11.5
NEUTRON GENERATORS

• CYCLOTRONS (PARTICLE ACCELERATORS)
 → 16 MeV DEUTRONS → Be = 6MeV NEUTRON
 POOR DEPTH DOSE & FIXED BEAM GEOMETRY
• LARGER CYCLOTRONS → 22 – 50 MeV
 DEUTRONS OR 67 MeV PROTONS → Be
 ADEQUATE DOSE RATES AND GOOD DEPTH DOSES

FIXED HORIZONTAL BEAMS & IN PHYSICS
 INSTILLATIONS → INTEREST WANED BY MID 80’S

ICRO 2012, BHATINDA
P+ \rightarrow Be NEUTRONS
DD % CURVES COMPARISON

![Graph showing relative dose vs depth in water for different radiation types.]

- **p (66)/Be NEUTRONS** with SSD = 150 cm
- **60Co** with SSD = 80 cm
- **200 MeV PROTONS**
- **8 MV X-RAYS** with SSD = 100 cm
- **20 MeV ELECTRONS**
CLINICAL APPLICATIONS

• **SALIVARY GLAND TUMORS** *(EXECPT SCC)* ➔ REDUCED VARIATION IN SENSITIVITY THROUGH OUT THE CELL CYCLE WITH SLOWLY CYCLING CELLS

• **ADENOID CYSTIC CA.** ➔ HIGHEST RBE (8.0) WITH # NEUTRON THERAPY. RBE > THAN FOR NORMAL TISSUE

• TREATING ADENOID CYSTIC CA. WITH 20 NEUTRON Gy = 160 Gy (PHOTONS) & =66 Gy IN EFFECT TO NORMAL TISSUE.
 THERAPEUTIC GAIN = 2.5
RESULTS

• NCI/ MRC TRIAL ---- LOW LET PHOTONS + ELECTRONS Vs NEUTRONS

• ADVANCED SALIVARY GLAND Tm. , > 7CM, UNRESECTABLE

• 10 YEAR LOCOREGIONAL TUMOR CONTROL 56 % WITH NEUTRONS Vs 17 % LOW LET RADIATION (P = .009). 10 Yr SURVIVAL NO DIFFERENCE DUE TO DEVELOPMENT OF DISTANT METASTASIS IN BOTH GROUPS
• **SCCHN CA.**---- RESULTS EQIVOCAL, NO OVERALL DIFFERENCES OBSERVED IN EITHER LOCOREGIONAL TUMOR CONTROL OR SURVIVAL.

• CERVICAL ADENOPATHY PRESENT –

<table>
<thead>
<tr>
<th>RANDOMIZED STUDY</th>
<th>LOCAL CONTROL</th>
<th>LOCAL CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEUTRONS</td>
<td>PHOTONS / ELECTRONS</td>
</tr>
<tr>
<td>MRC</td>
<td>22 / 38 (58%)</td>
<td>20 / 41 (49%)</td>
</tr>
<tr>
<td>RTOG</td>
<td>49 / 109 (45%)</td>
<td>23 / 87 (26%)</td>
</tr>
<tr>
<td>NCI / MRC</td>
<td>35/57 (61%)</td>
<td>33 / 67 (49%)</td>
</tr>
</tbody>
</table>
• **NSCLC** – COMBINATIONS OF NEUTRONS + PHOTONS \(\rightarrow\) INCREASED TUMOR STERILIZATION AT AUTOPSY.

• UNIV. OF WASHINGTON – 70 % LCR

• M.D.A. C.C. – 91 % LCR WITH PANCOAST TM. \(\rightarrow\) IMPROVEMENT OF SURVIVAL RATES

• NO SURVIVAL BENEFIT WITH IN LOCALLY ADVANCED, INOPERABLE NSCLC.

• MAY SHOW BENEFIT ONLY IN THE GROUP OF PATIENTS WITH GOOD PROGNOSTIC INDICATORS AND SUPERIOR SULCUS TUMORS.
• **PROSTATE CANCER** – STATISTICALLY SIGNIFICANT ADVANTAGES IN TERMS OF LRC, OS & DFS

• RTOG – 178 PTS. 5 YEAR SURVIVAL 89 % FOR NEUTRONS & 68 % FOR PHOTONS (P < 0.01)

PSA ELEVATED AT 5 YRS IN 17 % FOR PTS TREATED WITH NEUTRONS Vs 45 % FOR THOSE TREATED WITH PHOTONS
<table>
<thead>
<tr>
<th>SARCOMA</th>
<th>LOCAL CONTROL</th>
<th>LOCAL CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARCOMA</td>
<td>NEUTRONS</td>
<td>PHOTONS / ELECTRONS</td>
</tr>
<tr>
<td>SOFT TISSUE SARCOMA</td>
<td>158/ 297 (53%)</td>
<td>49 / 128 (38%)</td>
</tr>
<tr>
<td>OSTEOGENIC SARCOMA</td>
<td>40 / 73 (55%)</td>
<td>15 / 73 (21%)</td>
</tr>
<tr>
<td>CHONDROSARCOMA</td>
<td>25/ 51 (49%)</td>
<td>10/ 30 (33%)</td>
</tr>
</tbody>
</table>
Proton Therapy

- 55,000 patients have been treated with proton therapy World Wide

- In the United State there are five facilities offering this treatment

- Approximately 20,000 patients have been treated between two of this facilities
 - The Harvard cyclotron laboratory at Massachusetts General Hospital
 - The Proton Treatment Center at Loma Linda University Medical Center (LLUMC)

- The other three new centers providing this service in the US are
 - M.D. Anderson Proton Therapy Center in Houston
 - University of Florida's Shands Medical Center in Jacksonville
 - University of Pennsylvania's proton facility in Philadelphia
PROTON BEAM GENERATORS

ION SOURCE → PROTONS →

VACUM LINEAR ACCELARATOR TO, 7 MeV IN MICRO SECONDS →

ENTER THE SYCHOTRON WHERE ACCELERATED TO ENERGIES 70 MILLION – 250 MeV → BEAM TRANSPORT
235MeV proton cyclotron used for proton cancer therapy at Boshan, China

Hydrogen plasma ion source inside of the accelerator
Protons vs Photons

- Irradiate smaller volume of normal tissues
- Photon beam decreases exponentially with depth in the irradiated tissues
- Protons have a finite range
- Protons deposit most of their radiation energy in what is known as Bragg's peak

Image courtesy of Dr. Annie Chan, Dept of Radiation Oncology, MGH, Boston, MA
Bragg’s Peak

• Described by William Bragg over 100 years ago
• Depth is dependent on the energy of the proton beam
• This energy can be control very precisely

Image courtesy of Dr Annie Chan, Dept of Radiation Oncology, MGH, Boston, MA
Proton Therapy

• Spread-out Bragg peaks (SOBP)
 – The dose peak may be ‘spread out’ to achieve a uniform dose

• Spot scanning method
 – Recently introduced
 – Small pencil beams of a certain energy deposit their peaks to obtain ‘dose-sculpting’ of the target
Dose Equivalent

- Relative biological effectiveness (RBE)
 - Ratio of the photon dose to the particle dose required to produce the same biological effect
- An RBE value of 1.1 is generally accepted for clinical use with proton beams
- Gray equivalents (GyE) or cobalt Gray equivalents (CGE) often used with protons
 - Gray multiplied by the relative biological effectiveness (RBE) factor specific for the beam used
Carbon ions

- The RBE of carbon ions has an estimated value of 3
- Carbon ion therapy attempts to capture the 'best of both worlds,'
 - Presence of the proton’s Bragg peak
 - Advantage of their high RBE to increase the tumor control probability
IMPT

- Intensity modulated proton therapy (IMPT)
 - Radiation portals which adds more accuracy to target zone
 - Also, in contrast to the two-dimensionality of IMRT, IMPT is able to modulate the Bragg peak allowing three-dimensional optimization.
• The dose to 90% of the cochlea was reduced from 101% with standard photons, to 33% with IMRT, and to 2% with protons.
CLINICAL APPLICATIONS OF PROTONS AND HEAVY IONS - UVEAL MELANOMA

EQUIVALENT OF 70 GY / 5 # / 8-9 DAYS

<table>
<thead>
<tr>
<th>5 YrS</th>
<th>PROTONS</th>
<th>HELIUM IONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL CONTROL</td>
<td>96 %</td>
<td>97 %</td>
</tr>
<tr>
<td>EYE RETAIN</td>
<td>89 %</td>
<td>83 %</td>
</tr>
<tr>
<td>MET. FREE SURVIVAL</td>
<td>80 %</td>
<td>76 %</td>
</tr>
</tbody>
</table>
SARCOMAS ADJACENT TO CNS TISSUES

CHORDOMAS OR CHONDROSARCOMA
POST OP PHOTON RADIATION LRC = 35 – 40%
HAVARD CYCLOTRON – 68.5 PHOTON Gy EQIV. @ 1.8 PHOTON Gy
5 Yr LCR = 91 % FOR CHONDROSARCOMAS AND 65 % FOR CHORDOMAS
PROSTATE CA.

• BIOCHEMICAL RELAPSE AND TOXICITY

• 30 CGE BOOST + 45 Gy PHOTONS – 4 FIELD 3 D CONFORMAL TECHNIQUE

• DFS @ 10 Yrs – 73 % AND 90 % WHEN INITIAL PSA <= 4.

• LONG TERM OUTCOMES COMPARABLE TO OTHER MODALITIES INTENDED FOR CURE
SUMMARY OF CLINICAL INDICATIONS FOR PARTICLE THERAPY

NEUTRONS

- SALIVARY GLAND, ADVANCED
- PROSTATE CANCER T2 – T4, N0 – 2, M0
- UNRESECTABLE SOFT TISSUE, BONE, CARTILAGE SARCOMAS
- SCCHN PRESENTING WITH LARGE NECK NODES

PROTONS

- UVEAL MELANOMAS
- CHORDOMAS OR CHONDROSARCOMA ADJACENT TO CNS TISSUE
THANK YOU